Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this paper we discuss in some detail how the pressures determined from semi-classical statistical averaging of the energy momentum tensor in the presence of a uniform background magnetic field are anisotropic with different pressures arising along and perpendicular to the magnetic field direction. Hence, we analyze how this result can affect two important characteristics of dense magnetized systems: (i) The hadron-quark phase transition in the presence of a magnetic field, (ii) The behavior of the speed of sound in dense magnetized systems. Taking into account that large magnetic fields are expected to be present in the interior of neutron stars, we will stress the role the pressure anisotropy plays in the physics of these compact astronomical objects.more » « less
-
World Scientific (Ed.)We investigate the hadron-quark phase transition at finite density in the presence of a magnetic field taking into account the anisotropy created by a uniform magnetic field in the system’s equations of state. We find a new anisotropic equilibrium condition that will drive the first-order phase transition along the boundary between the two phases. Fixing the magnetic field in the hadronic phase, the phase transition is realized by increasing the baryonic chemical potential at zero-temperature. It is shown that the magnetic field is mildly boosted after the system transitions from the hadronic to the quark phase. The magnetic-field discontinuity between the two phases is supported by a surface density of magnetic monopoles, which accumulate at the boundary separating the two phases. The mechanism responsible for the monopole charge density generation is discussed. Each phase is found to be paramagnetic with higher magnetic susceptibility in the quark phase. The connection with the physics of neutron stars is highlighted throughout the paper.more » « less
-
We discuss how a magnetic field can affect the equation of state of a many-particle neutron system. We show that, due to the anisotropy in the pressures, the pressure transverse to the magnetic field direction increases with the magnetic field, while the one along the field direction decreases. We also show that in this medium there exists a significant negative field-dependent contribution associated with the vacuum pressure. This negative pressure demands a neutron density sufficiently high (corresponding to a baryonic chemical potential of μ = 2.25 GeV) to produce the necessary positive matter pressure that can compensate for the gravitational pull. The decrease of the parallel pressure with the field limits the maximum magnetic field to a value of the order of 10 18 G, where the pressure decays to zero. We show that the combination of all these effects produces an insignificant variation of the system equation of state. We also found that this neutron system exhibits paramagnetic behavior expressed by the Curie’s law in the high-temperature regime. The reported results may be of interest for the astrophysics of compact objects such as magnetars, which are endowed with substantial magnetic fields.more » « less
An official website of the United States government
